Team 9: Development of Kite Power Generator

Andrew Colangelo, Zachary Ezzo, Matthew Hedine, Denitsa Kurteva

Advisor: Dr. Kunihiko Taira Sponsor: Mr. Jeff Phipps

Presentation Overview

- Project Scope/Goals
- Concept Generation
- Kite motion mimicking
- Demo Testing/Results
- Suggested Improvements
- Challenges
- Summary

Matthew Hedine

The Problem at Hand

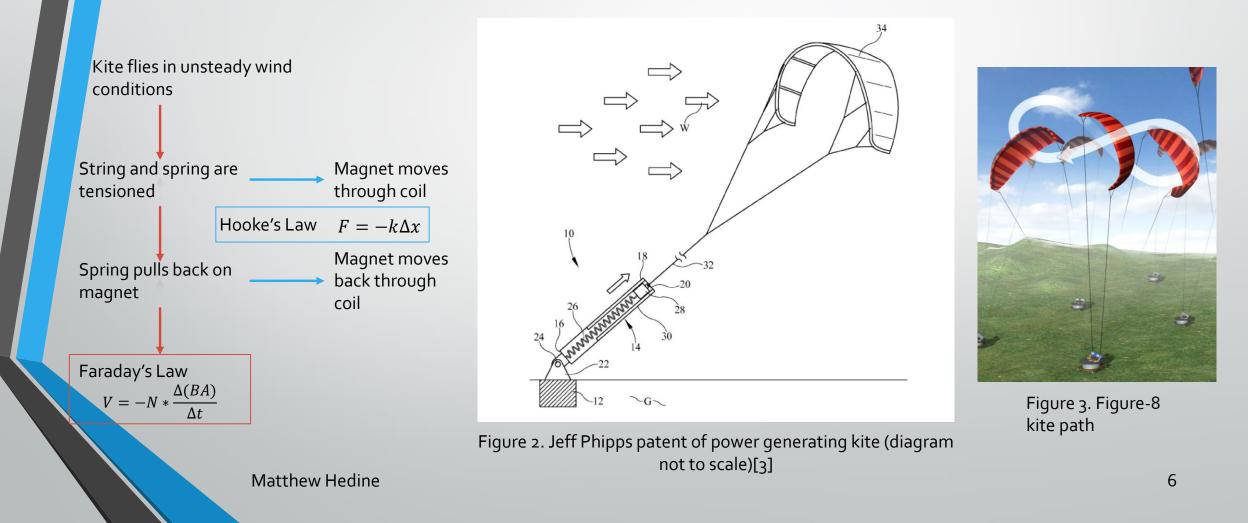
Worlds energy consumption expected to increase by 48% by the year 2040[1]

- Wind turbine
- Solar energy
- Nuclear energy
- Optimize for Greek Islands
 - Wind speeds of around 20mph

Design and build the power generating system of a kite power generator, and scale for a 100kW concept kite.

Constraints

- Altitude between 500 and 1500 feet
- Must deliver AC power to grid
- Limited to off the shelf products
- Optimized for Greek Islands


Figure 1. Picture showing mountainous Greek islands

Project Goals

- Demonstrate that magnet in electrical coil will generate usable electricity
 - Use a kite to oscillate magnet
 - Varying tension in line/spring
 - Power a lightbulb
- Concept for a method for optimization of energy output based on wind speeds
 - Scale for a 100kW kite
- Determine feasibility for mass power generation

General Schematic

Concept Generation: Maintaining Oscillation

Motorized Spring Stiffness Variation

- Greater variation in spring stiffness
- Requires power input
- Concentric Springs
 - No power input and high safety factor
 - Steps in spring stiffness
- Pulley system
 - Greater relative speeds between magnet and coil
 - Added complexity to the design

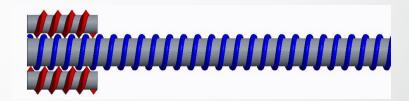


Figure 4. Motorized Spring Stiffness Variation

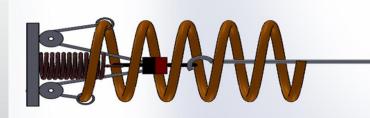


Figure 5. Pulley System

Concept Generation: Demo Model

Concentric Springs were chosen

- Simple design
- Allows for variation in spring stiffness with little failure scenarios
- Determined optimal conditions for necessary power generation via Faraday's Law
 - Magnet speed/strength
 - Number of coils
- Magnet of 1.32T strength moving at a speed of 50 wraps/sec to power a 40W light bulb

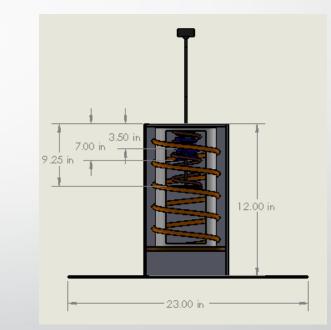
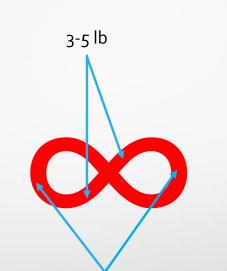



Figure 6. Concept for kite stabilization/control

Concept Generation: Kite Selection

- Tested kites for maneuverability
- Traction and Stunt kite
 - Traction kite
 - More lift
 - Higher control
 - Slower movements
 - Stunt Kite
 - Less lift
 - Faster maneuvers
 - Less stable
 - Force output via spring scale
 - 3-5 lbs on straight path, 10-15 lbs on curves

10-15 lb

Figure 7. Measured forces along kite

path

Figure 8. Traction kite that was tested

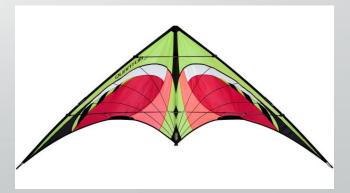
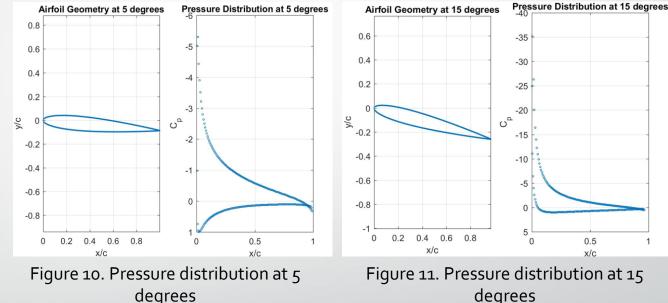



Figure 9. Stunt kite that was tested

Matthew Hedine

Concept Generation: Lift Calculations/Kite Strings

- 35 mph headwind from 20mph wind at sea level
 - Lift force at 5 degrees angle of attack is 15lbf an 1.5lbf of drag
 - Lift force at 15 degrees angle of attack is 45lbf and 5lbf of drag
- 1/4" Diameter Nylon String
 - Breaking Strength: 1805 lbf
 - Weight: 0.016 lb/ft
 - Mold and mildew resistant
 - Great strength to weight ratio
- String deflection was estimated to be ~0.5in
 - Negligible potential energy lost to string

Mimicking Kite Motion

- Designed concepts for kite oscillation if kite cannot be correctly maneuvered
 - Motor will be used to mimic the tension in the line
- Allows for optimization of desired kite frequency
- Kite force can be varied by winding string around shaft
 - Compresses spring

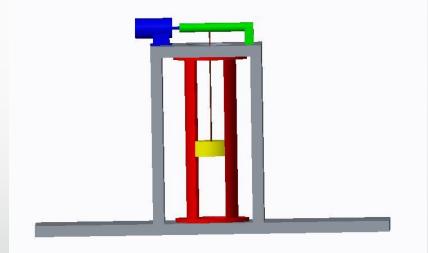


Figure 12. Motor to be used for kite motion mimicking

Motor Selection

- High Torque motor
- Will be programmed to achieve different compression rates
- Different setups for different compression lengths

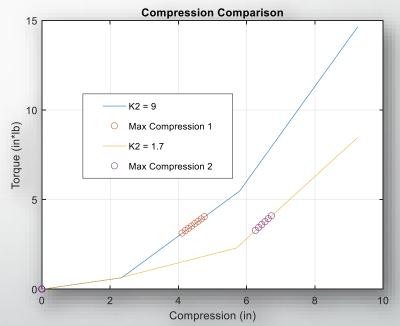


Figure 13. Compression of springs using selected motor

Demo Testing: Kite Modifications

- Two lines tied from junction of all control stings
 - One on left, one on right
- Strings meet at quick clip in middle
- Single line down to power generator
- Voltage generation measurements from hand cranking
 - Max voltage was 0.5V
 - 2 orders of magnitude less than expected

Figure 14. Demonstration model with motor attached



Figure 15. Diagram showing how 3rd string was attached

Andrew Colangelo

Results from Demo Testing

- Kite folded when it reached max height
 - String to magnet snapped at higher altitudes
- Max Voltage reached was ~0.4V
- Not able to manipulate kite in a periodic manner
 - Third string was slacked at bottom of figure-8

Andrew Colangelo

Suggested Improvements

- Multiple Magnets
- Lighter magnets
 - Smaller kite can be used to lift magnets
 - Faster oscillation can be achieved
- Stiff winged kite
 - Framed power kite
- More wraps in coil with tighter spacing
 - Thinner wire = more wraps

Figure 16. Example of framed traction kite

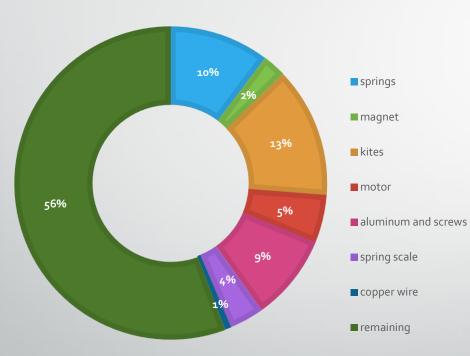
Denitsa Kurteva

Challenges Encountered

Controlling demonstration model kite

- Finding suitable wind to maintain steady flight path
- Attaching string to housing without loss in maneuverability
 - Length of third string
- Narrowing down the scope
- Much lower power generation than expected

Planned Methodology


Table 2. Gantt Chart for Spring semester

Task Name	Duration	Start	Finish	Feb			Feb				Mar			
				Jan 23	Jan 30	Feb 6	Feb 13	Feb 20	Feb 27	Mar 6	Mar 13	Mar 20	Mar 27	Apr 3
Order kites	10d	01/23/17	02/03/17											
Finalize ground plate and housing designs	10d	01/23/17	02/03/17											
Machine grounding plate	7d	02/01/17	02/09/17											
3D print springs housing	7d	02/01/17	02/09/17											
Test kites	8d	02/08/17	02/17/17											
Kite control concept generation	10d	02/13/17	02/24/17											
Kite control concept selection	6d	02/25/17	03/03/17											
Kite performance optimization	8d	03/01/17	03/10/17											
Concept kite material selection	5d	03/08/17	03/14/17											
Demonstration model testing	26d	03/01/17	04/05/17											
Refine demonstration model	14d	03/17/17	04/05/17											
Finalize 100kw scale model concept	6d	04/01/17	04/07/17											

- Weekly meetings with sponsor/faculty advisor
- Bi-weekly meetings with team to tackle problems and catch up on individual tasks

Budget

BUDGET DISTRIBUTION

Table 3. Budget breakdown

ltems	Cost (USD)
3 springs	129.44
Magnet	48.26
2 kites	270.27
Al sheet	162.93
Copper wire	13.2
Spring scale	71.13
Screws	16.00
New springs	76.69
Acrylic rod*	351
DC motor	99.53
TOTAL:	<mark>1,238.45</mark>

Denitsa Kurteva

Summary

Design and build the power generating system of a kite power generator, and scale for a 100kW concept kite.

Demonstration Model has been assembled and preliminary test has been conducted

- Concentric springs used to vary the spring coefficients based on wind speeds
- Induced voltage 2 orders of magnitude lower than expected
- Motor is used to simulate kite motion
 - Allows for variation in the oscillation of the magnet
- There is commercial potential, however refinements need to be made
 - Add more copper windings, and magnets

Denitsa Kurteva

Thank you! Denitsa Kurteva

References

[1] http://www.eia.gov/todayinenergy/detail.php?id=26212
[2] http://www.climatechangepost.com/greece/fresh-water-resources/
[3] https://www.uspto.gov/patents-application-process/search-patents
[4] http://www.conserve-energy-future.com/Disadvantages_SolarEnergy.php
[5] https://www.windfinder.com/weather-maps/forecast/greece#6/38.367/23.810
[6] http://www.kitenergy.net/technology-2/key-points/
[7] https://adrienjousset.wordpress.com/2009/09/15/kitano/
[8] https://www.ted.com/talks/saul_griffith_on_kites_as_the_future_of_renewable_energy?language=en

Questions?